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Abstract

A greedy omnidirectional relay scheme is developed, and thecorresponding achievable rate region

is obtained for the all-source all-cast problem. The discussions are first based on the general discrete

memoryless channel model, and then applied to the additive white Gaussian noise (AWGN) models,

with both full-duplex and half-duplex modes.

I. INTRODUCTION

A general framework of omnidirectional relay has been developed in [1]-[4]. It generalizes

the decode-and-forward relay strategy introduced in [5] with the network coding idea introduced

in [6] to the case of wireless networks with multiple sources. Technically, it is a combination

of block Markov coding with binning, so that each relay can simultaneously transport multiple

messages in different directions. The effectiveness of this omnidirectional relay strategy has been

demonstrated by the result that it is possible to completelyeliminate interference in the network,

and each node can fully exploit the signals transmitted by all the other nodes.

In this paper, we develop a special “greedy” omnidirectional relay scheme in the sense that each

node tries to relay as many messages as possible. Without being regulated by network topologies,

this greedy scheme is simple to implement, and can be adaptive to time-varying situations.

Our discussion will first be on the general discrete memoryless channel model. And then,

motivated by wireless networks, the results will be appliedto the AWGN models, with both full-

duplex and half-duplex modes. For simplicity, in this paper, we focus on the all-source all-cast

problem, and obtain a general achievable rate region.

II. A GENERAL DISCRETE MEMORYLESS NETWORK CHANNEL MODEL

Consider a network ofn nodesN = {1, 2, . . . , n}, with the channel modeled by

(X1 × · · · × Xn, p(y1, . . . , yn|x1, . . . , xn),Y1 × · · · × Yn).

At each timet = 1, 2, . . ., every nodei ∈ N sends an inputXi(t) ∈ Xi, and receives an output

Yi(t) ∈ Yi, and they are related viap(Y1(t), . . . , Yn(t)|X1(t), . . . , Xn(t)).

http://arXiv.org/abs/0901.1503v2
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III. A G REEDY OMNIDIRECTIONAL RELAY SCHEME

The essence of this “greedy” scheme is that at the end of each block, every node decodes

as many messages as possible, and in the next block, relays all the messages it has decoded,

with the restriction of adding at most one new message for each source. To be more specific,

every nodei relays the messagewj(b0), if it has decoded it, and it has relayed all the messages

wj(b), b = 1, . . . , b0 − 1 previously.

Consider the all-source all-cast problem, where each nodei is an independent source, and

wants to send some common information to all the other nodes at the rateRi. With this greedy

omnidirectional relay scheme, we have the following achievable rate region for the all-source

all-cast problem.

Theorem 3.1: Consider the all-source all-cast problem. With the greedy omnidirectional relay

scheme, a rate vector(R1, R2, . . . , Rn) is achievable if for any nonempty subsetS ⊂ N , there

is a nodei0 ∈ S, such that
∑

j∈Sc

Rj < I(XSc ; Yi0|XS) (1)

for somep(x1)p(x2) · · ·p(xn), whereXSc = {Xj : j ∈ Sc}, andXS = {Xi : i ∈ S}.

For three-node networks, the achievability of the rate region prescribed by (1) has been proved

in [2, Thm 4.1], where, instead of the greedy relay scheme, the relay ordering was set according

to the relative strengths of the channels between differentnodes. However, even for three-node

networks, the proof in [2] turned out to be rather complicated, since there were too many different

cases to address. Here, in Section VI of this paper, we will present a simple and general proof

based on the greedy relay scheme, which applies to networks with any number of nodes.

Now, we consider a time-varying operation of the network, with different input distributions in

different blocks. Specially, we are interested in the periodic case, where the input distribution in

block b is pk(x1)pk(x2) · · ·pk(xn) with k = (b mod K) for some periodK ≥ 2. Correspondingly,

we have the following conclusion.

Theorem 3.2: Consider the all-source all-cast problem. With the periodic greedy omnidirec-

tional relay scheme, a rate vector(R1, R2, . . . , Rn) is achievable if for any nonempty subset

S ⊂ N , there is a nodei0 ∈ S, such that

∑

j∈Sc

Rj <
1

K

K
∑

k=1

Ik(XSc ; Yi0|XS)

where, the mutual informationIk is calculated based onpk(x1)pk(x2) · · · pk(xn).

Obviously, to obtain more general results, we can also consider different block lengths. Let

block b have lengthLk with k = (b mod K). Then, we have the following conclusion.
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Theorem 3.3: Consider the all-source all-cast problem. With the periodic greedy omnidirec-

tional relay scheme with varying block lengths, a rate vector (R1, R2, . . . , Rn) is achievable if

for any nonempty subsetS ⊂ N , there is a nodei0 ∈ S, such that

∑

j∈Sc

Rj <
1

∑K

k=1 Lk

K
∑

k=1

LkIk(XSc ; Yi0|XS)

where, the mutual informationIk(·) is calculated based onpk(x1)pk(x2) · · ·pk(xn).

IV. FULL -DUPLEX AWGN WIRELESS NETWORKS

Consider the following AWGN wireless network channel modelwith full-duplex mode:

Yj(t) =
∑

i∈N

i6=j

gi,jXi(t) + Zj(t), ∀ j ∈ N , t = 1, 2, . . . (2)

where,Xi(t) ∈ C1 and Yi(t) ∈ C1 respectively denote the signals sent and received by Node

i ∈ N at time t; {gi,j ∈ C
1 : i 6= j} denote the signal attenuation gains; andZi(t) is zero-mean

complex Gaussian noise with varianceN .

Consider the average power constraint:

1

T

T
∑

t=1

|Xi(t)|
2 ≤ Pi for all T = 1, 2, . . . , and i ∈ N .

Then applying Theorem 3.1, we have the following conclusion.

Theorem 4.1: Consider the all-source all-cast problem for the full-duplex AWGN wireless net-

works. With the greedy omnidirectional relay scheme, a ratevector(R1, R2, . . . , Rn) is achievable

if for any nonempty subsetS ⊂ N , there is a nodei0 ∈ S, such that

∑

j∈Sc

Rj < log

(

1 +

∑

j∈Sc |gj,i0|
2Pj

N

)

.

V. HALF-DUPLEX AWGN WIRELESS NETWORKS

Consider the following AWGN wireless network channel modelwith half-duplex mode: At

time t = 1, 2, . . ., the transmitter set isT (t) ⊂ N , and the receiver set isR(t) = N\T (t), and

Yj(t) =
∑

i∈T (t)

gi,jXi(t) + Zj(t), ∀ j ∈ R(t), (3)

where,Xi(t) ∈ C1 andYj(t) ∈ C1 respectively denote the signal sent by nodei and the signal

received by nodej at time t; {gi,j ∈ C1 : i 6= j} denote the signal attenuation gains; andZj(t)

is zero-mean complex Gaussian noise with varianceN .
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Consider the following average power constraint:
∑T

t=1 |Xi(t)|
2
I[i∈T (t)]

∑T

t=1 I[i∈T (t)]

≤ Pi for all T = 1, 2, . . . , and i ∈ N ,

whereI[·] is the indicator function:

I[i∈T (t)] =

{

1, if i ∈ T (t),

0, otherwise.

Consider a periodically block-varying operation of the network. In block b = 1, 2, . . ., the

block length isLk, the transmitter set isTk, and the receiver set isRk, with k = (b mod K) for

some periodK ≥ 2. Then by Theorem 3.3, we have the following conclusion.

Theorem 5.1: Consider the all-source all-cast problem for the half-duplex AWGN wireless

networks. With the periodic greedy omnidirectional relay scheme with varying block lengths, a

rate vector(R1, R2, . . . , Rn) is achievable if for any nonempty subsetS ⊂ N , there is a node

i0 ∈ S, such that

∑

j∈Sc

Rj <
1

∑K

k=1 Lk

K
∑

k=1

LkI[i0∈Rk ] log

(

1 +

∑

j∈Sc∩Tk
|gj,i0|

2Pj

N

)

.

VI. PROOF OF THETHEOREMS

Proof of Theorem 3.1: The key to the proof is the technical Lemma 4.1 developed in [4],

which basically says that once the inequality (1) holds, node i0 can always decode the messages

of some nonempty subset ofSc. We will prove by induction that each node can decode the

messages sent by all the other nodes.

According to the greedy relay scheme, once a nodei has decoded some messages of another

nodej, it will always transmit the messages of nodej in the subsequent blocks. We say that

nodei covers a set of nodesS, if node i has decoded some messages of every node inS, and

therefore, will transmit the messages of every node inS in the subsequent blocks. It is obvious

that at the end of any blockb ≥ 1, each nodei can decode the block-b transmission of some

other nodeji 6= i, by applying the Lemma to (1) withS = {i}. In other words, at the end of

block b, each nodei will at least cover what have been covered by certain two nodes {ji, i} at

the end of blockb − 1. For b ≥ 2, since at the end of blockb − 1, each one of the two nodes

{ji, i} must have covered what had been covered by at least a pair of nodes at the end of block

b − 2, we have that at the end of blockb, nodei will at least cover what had been covered by

three nodes at the end of blockb − 2. To see this, there are two cases: If at least one of the

two pairs is different from{ji, i}, the total covering is obviously at least three nodes; If both the
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two pairs are identical to{ji, i}, then one of the two nodes{ji, i} must be able to cover another

node according to the Lemma applied to (1) withS set to{ji, i}, thus still leading to a covering

of at least three nodes. Therefore, at the end of any blockb ≥ 2, each node will at least cover

what had been covered by certain three nodes at the end of block b − 2.

Now, since at the end of any blockb ≥ 4, each nodei at least covers what had been covered

by certain three nodes{ji, ki, i} at the end of blockb− 2, while each of them in turn must have

covered what had been covered by a set of three nodes at the endof block b − 4, we have that

at the end of blockb, node i will at least cover what had been covered by four nodes at the

end of blockb − 4. To see this, similarly there are two cases: If at least one ofthe three sets is

different from{ji, ki, i}, the total covering is at least four nodes; If all the three sets are identical

to {ji, ki, i}, then one of the three nodes{ji, ki, i} must be able to cover another node according

to the Lemma applied to (1) withS set to{ji, ki, i}, thus still leading to a covering of at least

four nodes. Therefore, at the end of any blockb ≥ 4, each node will at least cover what had

been covered by certain four nodes at the end of blockb − 4.

Inductively, it is easy to see that at the end of any blockb ≥ 2m−2, each node will at least

cover what had been covered by certainm nodes at the end of blockb− 2m−2. Since each node

covers itself by the end of block 0, for a network of any finiten nodes, each node will cover

the whole network, i.e., be able to decode some messages of any of the other nodes, at least by

the end of blockb = 2n−2.

Before we conclude the proof, we need to demonstrate that thedecoding delay is finite, so

that there is no rate loss by block Markov coding. We use a contradiction argument. Suppose

that the delay of some nodei decoding the messages of another nodej is not upper bounded,

i.e.,

lim sup
b→∞

[Di(wj(b)) − b] = ∞ (4)

whereDi(wj(b)) denotes the block, by the end of which, nodei decodes the messagewj(b)—the

block-b message of nodej. Since at the end of any blockb ≥ 1, node i always decodes the

block-b transmission of another node, if (4) holds, then there must exist another nodei1 6= i,

such that

lim sup
b→∞

[Di1(wj(b)) − b] = ∞. (5)

In fact, if no other nodes encounter an unbounded delay, thenno other nodes will relaywj(b)

with an unbounded delay, and then nodei will not decodewj(b) with an unbounded delay.

Now, since bothi and i1 encounter unbounded delay in decodingwj(b), for the same reason

as above, there must be a third node that encounters unbounded delay in decodingwj(b). This
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argument can be continued, so that all the nodes have to encounter unbounded delay in decoding

wj(b), including nodej itself. This is obviously in contradiction. Therefore, (4)cannot hold, i.e.,

all the decoding delays in the network must be uniformly bounded by some constantT0.

�

Proofs of Theorems 3.2 and 3.3 follow similarly by treating every K blocks together as a

group block, and applying the argument above to the group blocks. Theorems 4.1 and 5.1 are

simple applications.
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